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‘Misinformation’ instead of ‘fake news’
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▸ The expression ‘fake 
news’ does not represent 
the complex reality of 
misinformation

▸ The COVID-19 pandemic 
has caused an infodemic 
in OSN

Claire Wardle, Hossein Derakhshan (First Draft News, 2017)



Information disorders
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▸ Information disorder syndrome is the sharing or developing of false 

information with or without the intent of harming and they are 

categorized as misinformation, disinformation and malinformation

▸ Information disorders is a term that includes all the different methods 

used to pollute information streams such as fake news, hoaxes, 

hyperpartisan content, propaganda, inaccurate (misleading) information 

or rumors, etc..



Some examples
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Anti-masks claimsCOVID-19

denialists

Anti-vaccine claims



The damage caused by disinformation

Psychological harm

(S)extorsion

Defamation

Intimidation, Bullying

Undermining trust 

Financial harm

Extorsion, Identity theft

Fraud

Stock-price manipulation

Brand damage, reputational damage

Societal harm

News media manipulation

Damage to economic stability , 
justice, scientific systems, democracy, 
national security

Erosion of trust

Manipulation of elections
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Badillo-Matos, A., et al. (2023). Analysis of the Impact of Disinformation on Political, Economic, 
Social and Security Issues, Governance Models and Good Practices: The cases of Spain and 
Portugal. Pamplona: IBERIFIER. 

The perception of
disinformation as a 
problem in Europe
(Eurobarometer 2022)
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Disinformation and social media

▸ Social media represents they main instrument for the spreading of 
mis- and disinformation

▸ Hoaxes and rumours spread like wildfire in social networks (X-Twitter, 
Facebook, TikTok)

▸ But also, in messaging services like WhatsApp
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The Disinformation ecosystem

Zhang, X., & Ghorbani, A. A. (2020). An overview of online fake news: Characterization, detection, and discussion. IPM, 57(2), 102025.



What can we do?
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▸ Can AI stop fake news, mis-&dis-
information, and other information
disorders?

▸ Can AI be used to create, spread,
and even orchestrate, large-scale
disinformation campaigns?



Tackling the problem of information disorders
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▸ However, these techinques can be used for:

▸ DETECT and PREVENT (countering) disinformation

▸ GENERATE disinformation



AI & disinformation generation (the dark side)
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▸ Current dark-AI approaches are mainly used for:

▸ Text generation

▸ Image generation

▸ Video generation



AI & disinformation generation (the dark side)
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▸ Text generation

A malicious comment generated by Malcom misleads a neural fake news 

detector to predict real news as fake



AI & disinformation generation (the dark side)
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▸ Text generation (LLM)



AI & disinformation generation (the dark side)
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▸ Text generation
▸ Zellers, R., Holtzman, A., Rashkin, H., Bisk, Y., Farhadi, A., Roesner, F., & Choi, Y. (2019). Defending against

neural fake news. Advances in neural information processing systems, 32.

▸ Le, T., Wang, S., & Lee, D. (2020, November). Malcom: Generating malicious comments to attack neural 
fake news detection models. In 2020 IEEE International Conference on Data Mining (ICDM) (pp. 282-291). 
IEEE.

▸ Karuna, P., Purohit, H., Jajodia, S., Ganesan, R., & Uzuner, O. (2020). Fake document generation for cyber
deception by manipulating text comprehensibility. IEEE Systems Journal, 15(1), 835-845.

▸ Bakhtin, A., Gross, S., Ott, M., Deng, Y., Ranzato, M. A., & Szlam, A. (2019). Real or fake? learning to 
discriminate machine from human generated text. arXiv preprint arXiv:1906.03351.

▸ Nayak, A. S. (2020). DeepSpot: spotting fake reviews with sentiment analysis and text generation.



AI & disinformation generation (the dark side)
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▸ Image generation

Varshney, D., & Vishwakarma, D. K. (2021). A review on rumour prediction and veracity 

assessment in online social network. Expert Systems with Applications, 168, 114208.

Examples of misleading multimedia content presents over the social web 



AI & disinformation generation (the dark side)
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▸ (automatic) Image generation
▸ Marra, F., Gragnaniello, D., Cozzolino, D., & Verdoliva, L. (2018, April). Detection of gan-generated fake images over social 

networks. In 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR) (pp. 384-389). IEEE.

Spot the fake. Two satellite images, one downloaded from Google Maps, the 

other artificially generated



AI & disinformation generation (the dark side)
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▸ (automatic) Image generation: DeepFakes
▸ Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A., & Ortega-Garcia, J. (2020). Deepfakes and beyond: A survey of 

face manipulation and fake detection. Information Fusion, 64, 131-148.
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AI & disinformation generation (the dark side)
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▸ (automatic) Image generation
▸ Khodabakhsh, A., Ramachandra, R., Raja, K., Wasnik, P., & Busch, C. (2018, September). Fake face detection methods: 

Can they be generalized?. In 2018 international conference of the biometrics special interest group (BIOSIG) (pp. 1-6). 
IEEE.

▸ Tandoc Jr, E. C. (2019). The facts of fake news: A research review. Sociology Compass, 13(9), e12724.

▸ Galbally, J., Cappelli, R., Lumini, A., Maltoni, D., & Fierrez, J. (2008, December). Fake fingertip generation from a minutiae
template. In 2008 19th International Conference on Pattern Recognition (pp. 1-4). IEEE.

▸ Gao, C., Liu, Q., Xu, Q., Wang, L., Liu, J., & Zou, C. (2020). Sketchycoco: Image generation from freehand scene sketches. 
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 5174-5183).

▸ Jeon, H., Bang, Y., & Woo, S. S. (2020, September). Fdftnet: Facing off fake images using fake detection fine-tuning
network. In IFIP International Conference on ICT Systems Security and Privacy Protection (pp. 416-430). Springer, 
Cham.

▸ Chai, L., Bau, D., Lim, S. N., & Isola, P. (2020, August). What makes fake images detectable? understanding properties
that generalize. In European Conference on Computer Vision (pp. 103-120). Springer, Cham.

▸ Marra, F., Gragnaniello, D., Cozzolino, D., & Verdoliva, L. (2018, April). Detection of gan-generated fake images over social 
networks. In 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR) (pp. 384-389). IEEE.



AI & disinformation generation (the dark side)
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▸ Video generation
▸ Really complex technologies

▸ Used currently by marketing companies, and maybe by ‘others’



AI & disinformation generation (the dark side)
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▸ Video generation



AI & disinformation generation (the dark side)
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▸ Video generation
▸ Güera, D., & Delp, E. J. (2018, November). Deepfake video detection using recurrent neural networks. In 2018 15th 

IEEE international conference on advanced video and signal based surveillance (AVSS) (pp. 1-6). IEEE.

▸ Li, Y., & Lyu, S. (2018). Exposing deepfake videos by detecting face warping artifacts. arXiv preprint 
arXiv:1811.00656.

▸ Li, Y., Chang, M. C., & Lyu, S. (2018, December). In ictu oculi: Exposing ai created fake videos by detecting eye
blinking. In 2018 IEEE International Workshop on Information Forensics and Security (WIFS) (pp. 1-7). IEEE.

▸ Khodabakhsh, A., Ramachandra, R., & Busch, C. (2019, June). Subjective evaluation of media consumer vulnerability
to fake audiovisual content. In 2019 Eleventh International Conference on Quality of Multimedia Experience
(QoMEX) (pp. 1-6). IEEE.



AI & disinformation generation (the dark side)
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▸ Are these techniques really a problem (today)?

An example of fake news shared 
by a Facebook user

Zhang, X., & Ghorbani, A. A. (2020). An overview of online fake news: Characterization, detection, and 

discussion. Information Processing & Management, 57(2), 102025.
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Tackling the problem of information disorders
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▸ However, these techinques can be used for:

▸ DETECT and PREVENT (countering) disinformation

▸ GENERATE disinformation
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What are we looking for?

1. Automatic detection of disinformation

2. Automatic explanations of disinformation

3. Automatic ‘block’-spreading of disinformation

4. Automatic malicious actors detection (modeling and characterization)
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Style

Stylistic features 
of the text

Knowledge

Consistency with 
facts

Propagation

Spread of 
information

Source

Credibility in 
different stages

NLP

SNA

4 dimensions
to tackle the
problem of
information
disorders

Shu, K., Sliva, A., Wang, S., Tang, J., & Liu, H. (2017).                    
Fake news detection on social media: A data mining perspective.



Natural Languague Processing
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Social Network Analysis
▸ What is it?

▹ Social network analysis (SNA) is an area of research focused on the study of the 
relationships between entities that lead to the formation of networks.

▸ What can be analysed:

1. The content published by their members:

▹ Actors

▹ Behaviour

▹ Conteny

2. The structural properties of the network itself.

27

Weber, D. et.al, (2021). Exploring the effect of streamed social media data 

variations on social network analysis. Social Network Analysis and Mining, 

11



SNA: tracking disinformation

▸ To identify “influencers”, accounts that play a fundamental role in the dissemination of
mis/disinformation

▸ To analyse the propagation of a hoax or set of hoaxes

▸ To visualize the influence of fact-checkers and non-fact-checkers accounts in the spreading
process

▸ To analyse the origin of the hoax and the interaction with other hoaxes

Analysing the propagation cascade 
of hoaxes in Twitter and other OSNs Detecting influencers of 

disinformation



Can we analyse misinformation in social 
media networks?
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▸ NLP and SNA as a tools for analysing
social media:

▹ Data collection

▹ Measuring similarity

▹ Feature extraction for author
profiling

▹ Tracking misinformation through
the network

▹ Analyse the spreading velocity
Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news 

online. Science, 359
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What
problems do 
we face?

The verification of information

Anonymity

Use of jargon and specific vocabulary

Information tracking

Multimodal information processing

Limitations on information access



FacTeR-Check

Semi-Automated Fact-Checking through
Semantic Similarity and Natural Language

Inference

31

• Martín, A., Huertas-Tato, J., Huertas-García, Á., Villar-Rodríguez, G., & Camacho, D. (2022). FacTeR-Check: Semi-automated fact-checking
through semantic similarity and natural language inference. Knowledge-Based Systems, 251, 109265.

• Huertas-Tato, J., Martín, A., & Camacho, D. (2022). SILT: Efficient transformer training for inter-lingual inference.  Expert Systems with 
Applications, 200, 116923.

• Huertas-García, Á., Martín, A., Huertas-Tato, J., & Camacho, D. (2022). Exploring Dimensionality Reduction Techniques in Multilingual
Transformers.  Cognitive Computation , Vol. 15, pp. 590–612, 2023.



FacTeR-Check

Semi-automated fact-checking through semantic similarity and 
natural language inference

32

Automated data retrieval

from OSNs

2. Semantic similarity

evaluation

3. Natural Language

Inference

1 2 3



FacTeR-Check arquitecture
Framework for the deteciton, análisis and tracking of

disinformation in OSNs
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Semantic and NLI filtering

Facts 

checked

Semantic 

similarity 

ranking

Natural 

Language 

Inference

Retrieval from OSNs

Keyword 

extraction

Named-entity 

recognition

Query builder

Automatically 

extracted 

claims (i.e. 

tweets)

Manually-in

troduced 

claims to 

fact-check

 

Twitter API

Analysis of the propagation of claims

Graph 

building

Users 

hydration

Propagation 

cascade

Semi-automated fact-checking and claims 

management system

Users web 

portal

3rd party 

applications
Management
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FacTeR-Check

1. Retrieval from OSNs



FacTeR-Check

1. Retrieval from OSNs
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▸ Multilingual search queries generation



FacTeR-Check

2. Semantic similarity evaluation
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▸ Filtering and sorting relevance through semantic similarity



FacTeR-Check

2. Semantic similarity evaluation
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▸ Filtering and sorting relevance through semantic similarity



FacTeR-Check: Semantic Similarity 

• From 2688 to 429 dimensions after 

applying PCA. 

• This method not only reduces up to six 

times the initial dimensions of the 

ensemble, but it also requires fewer 

dimensions than most of the single 

models.



FacTeR-Check

3. Natural Language Inference

39

▸ Alignment evaluation between input and candidate verified claims



Efficient NLI

▸ Siamese architecture for 
inter-lingual Natural 
Language Inference

40



Sentence A Sentence B
Entailment/Contradiction/Neutral

1. If A is false and A entails B ⇒ B should be false
2. If A is a verified fake and A entails B ⇒ B should be fake

1. If they are Contradictory or Neutral we cannot 
guarantee any knowledge over A

2. However, if A contradicts B, it is a strong indicator 
that A is not fake information.

By evaluating the entailment of a statement against verified sources of 
information it is possible to determine if a statement contains misinformation.

Natural Language Inference



Efficient NLI
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Sentence 1 – Language A

Sentence 1 – Language B

Sentence 1 – Language C

Sentence 2 – Language A

Sentence 2 – Language B

Sentence 2 – Language C

Cross-lingual Natural Language Inference



Natural Language Inference

Results for the SICK test set. Spanish

results are extracted from machine

translations of the SICK test set.

Interlingual results are made from pairing

interchangeably Spanish and English

prompts
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What
problems do 
we face?

The verification of information

Anonymity

Use of jargon and specific vocabulary

Information tracking

Multimodal information processing

Limitations on information access
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DisTrack: Tracking disinformation in 
Online Social Networks through
Deep Natural Language Processing



Visualizing the propagation cascade of 
a hoax  in a social network
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@account0

@account1
@account2 @account3

@account4

@account5

Relevance 
assessment of each 

node according to 
the number of 

interactions (RTs, 
quotes and replies) 

or followers

Visualizing the propagation cascade of a hoax

N
od

e 
de

gr
ee

Time
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Detection of accounts that 
support the hoax and those 

that deny it (such as fact-
checkers)

Visualizing the propagation cascade of a hoax

N
od

e 
de

gr
ee

Time
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@account0

@account1
@account2

@account4

@account5

Detecting “influencers” in 
the context of 

misinformation 

N
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e 
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ee
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w
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s)

Visualizing the propagation cascade of 
a hoax  in a social network
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DisTrack - Demo

51



DisTrack - Demo

52
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What
problems do 
we face?

The verification of information

Anonymity

Use of jargon and specific vocabulary

Information tracking

Multimodal information processing

Limitations on information access

The verification of information



Working with multimodal information
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● Importance of Social Networks as pivotal communication centers in
contemporary society.

● Consequences of Misinformation on public opinion, safety and health
risks.

● Characteristics of Misinformation such as high virality, exploiting
users as distributors and complex and multimodal format.

● Our Approach: Early fusion multimodal
architecture that combines insights from different
data channels to assess post authenticity, utilizing a
combination of SotA models such as CLIP and
DeBERTa.

Girón A., Huertas-Tato J., Park J.H. & Camacho, D. (2024). Multimodal Analysis for Identifying Misinformation in Social 
Networks. WITC 2024, The 10th International Conference on Big data, IoT, and Cloud Computing. 13-15th February, Jeju, Korea



Proposed architecture
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• The architecture is designed to fuse several modalities (images, captions, comments & metadata)
• Three modules: (i) encoding module, (ii) projection module, (iii) classification head
• The network fuses the representations according to the type of information channel of each modality

• Code: https://github.com/adgiz05/multimodal-disinformation-detection

https://github.com/adgiz05/multimodal-disinformation-detection


Results

56

● Subset of 15,000 training and 5,000 validation posts from the "Fakeddit" dataset.
● Unimodal vs. Multimodal: incorporating images significantly enhances overall model performance.
● Impact of Metadata complicates model convergence due to complexness gap with the rest of modalities.
● Modality Integration increase robustness by achieving a better balance between accuracy and F1-score
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